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4 Department of Chemistry, New York University, New York, NY 10003, USA
5 Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY 10598,
USA

Received 24 October 2005, in final form 16 January 2006
Published 24 April 2006
Online at stacks.iop.org/JPhysA/39/5629

Abstract
The constant-pressure, constant-temperature (NPT) molecular dynamics
approach is re-examined from the viewpoint of deriving a new measure-
preserving reversible geometric integrator for the equations of motion. The
underlying concepts of non-Hamiltonian phase-space analysis, measure-
preserving integrators and the symplectic property for Hamiltonian systems
are briefly reviewed. In addition, current measure-preserving schemes for the
constant-volume, constant-temperature ensemble are also reviewed. A new
geometric integrator for the NPT method is presented, is shown to preserve
the correct phase-space volume element and is demonstrated to perform well
in realistic examples. Finally, a multiple time-step version of the integrator is
presented for treating systems with motion on several time scales.

PACS numbers: 05.20.−y, 02.40.−k, 31.15.Qg

1. Introduction

Over the last several decades, molecular dynamics (MD) has become one of the most important
and commonly used approaches for studying condensed phase systems. In an MD simulation,
it is often necessary or desirable to study a system under conditions of constant pressure
P and temperature T. Together with constant particle number N, these conditions define
the isothermal–isobaric or NPT ensemble. The NPT ensemble is often used for purposes
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of equilibrating a system, allowing it to adjust to an appropriate density, for computing
equilibrium properties under isobaric conditions, such as the Gibbs free energy, and for
studying structural phase transitions.

Among the ensembles typically used for molecular dynamics, namely the microcanonical
(NVE), canonical (NVT) and isothermal–isobaric (NPT) ensembles, the NPT ensemble is
generally regarded as the most difficult to generate due to the requirement that both the
kinetic energy and instantaneous pressure must fluctuate according to the ensemble distribution
function, which means that both the total energy and volume should vary such that the ensemble
distribution function

f (x, V ) = 1

N !V0h3N

exp [−β (H(x) + PV )]

�(N,P, T )
(1.1)

is generated. Here, P, V and T are the applied external pressure, the system volume and
the external temperature, respectively, β = 1/kT , x is the phase-space vector, i.e. the vector
whose components are the momenta and coordinates of all of the particles in the system,
and H(x) is the system Hamiltonian. V0 is an arbitrary reference volume, and h is Planck’s
constant. The quantity �(N,P, T ) is the partition function of the ensemble given by

�(N,P, T ) = 1

N !V0h3N

∫ ∞

0
dV

∫
dx exp[−β(H(x) + PV )]. (1.2)

If the Cartesian momenta and coordinates of the N particles are denoted by p1, . . . , pN,

r1, . . . , rN ≡ p, r, respectively, then equation (1.2) becomes

�(N,P, T ) = 1

N !V0h3N

∫ ∞

0
dV

∫
D(V )

dNr
∫

dNp[−β(H(p, r) + PV )] (1.3)

where each of the coordinate integrations is restricted by the spatial domain defined by the
volume at each value of the volume integration.

The most commonly used algorithms for generating the NPT ensemble are based on the
‘extended-phase-space’ approach [1, 9, 10, 17, 31], in which the volume is introduced as an
additional dynamical variable, along with a corresponding momentum variable, in order to
maintain isobaric conditions, while additional thermostat variables [21, 9, 18, 3, 15, 14] are
used to control the kinetic energy fluctuations. Additional mass-like parameters are assigned
to each of these additional variables, and it is these parameters which determine the time scales
on which the latter evolve. Equations of motion are specified as a means of generating the
phase-space distribution of the ensemble. Given that simulations in the NPT ensemble are
typically more challenging than in the NVE or NVT ensembles, it is important to have robust,
measure-preserving numerical methods for integrating the equations of motion. In this paper,
such an algorithm is introduced.

Of the various dynamical schemes that have been proposed for generating the NPT
ensemble, we will focus our attention on the algorithm of Martyna, Tobias and Klein (MTK)
[17], which has been shown to correctly reproduce the isothermal–isobaric distribution of
equation (1.1) [38]. We point out, however, that Hamiltonian formulations of the NPT
ensemble have also been presented [31], although these will not be discussed here. We will
begin the discussion by reviewing briefly the formalism underlying the statistical analysis of
non-Hamiltonian dynamical systems [22, 41, 42, 38, 29, 26, 27, 34, 33, 28]. We will then
review the algorithm of [19] for integrating the Nosé–Hoover chain (NHC) equations of motion
for the NVT ensemble [18], as this algorithm will figure prominently in the new NPT method.
Following this, we shall present the new approach for the MTK equations of motion [17]. We
will discuss how to combine the new integration algorithm with the multiple time-step method
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r-RESPA [40] for handling systems with multiple time-scale motion. Finally, a selection of
examples will be presented illustrating the performance of the method on realistic problems.

2. Statistical analysis of non-Hamiltonian dynamical systems

The dynamical systems to be considered in this paper possess two important characteristics:
(1) they involve ‘extended’ phase spaces in which the physical coordinates and momenta
are supplemented by additional variables which regulate the fluctuations in the estimators that
determine the thermodynamic control variables of a given statistical ensemble; and (2) they are
non-Hamiltonian (By ‘non-Hamiltonian’, we generally mean truly non-Hamiltonian systems
or Hamiltonian systems expressed in non-canonical coordinates.). A classical statistical
mechanical theory for non-Hamiltonian systems was developed recently [42, 38, 29, 26,
27, 34, 33, 28]. This theory provides a framework for analysing non-Hamiltonian systems
and determining the precise phase-space distribution generated by the equations of motion
assuming ergodicity. The main points of this theory are reviewed below.

Consider a general dynamical system described by the equations of motion

ẋ = ξ(x) (2.1)

where x is the complete phase-space vector and ξ(x) is a vector field on the phase space. A
sufficient condition to determine whether the equations of motion are non-Hamiltonian is that
the phase-space compressibility

κ(x) = ∇ · x = ∇ · ξ(x) (2.2)

be nonzero. This condition, however, is not necessary for a system to be non-Hamiltonian, there
are non-Hamiltonian systems with vanishing compressibility. A nonvanishing compressibility
has important implications for the structure of the phase space. In order to see this, consider a
solution of equations (2.1) starting from an initial phase-space point x0. Denote this solution at
time t by xt (x0). The notation xt (x0) indicates that the solution is a unique function of the initial
conditions. This solution can be viewed as a transformation from phase-space coordinates at
x0 at t = 0 to new phase-space coordinates xt at time t generated by the single parameter t.
Thus, the transformation can also be regarded as a one-parameter family of diffeomorphisms
on the phase space. Let J (xt ; x0) = |∂xt /∂x0| be the Jacobian of this transformation. The
Jacobian determines how the initial phase-space volume measure dx0 transforms to dxt :

dxt = J (xt ; x0) dx0. (2.3)

It is straightforward to show that the Jacobian satisfies an equation of motion of the form
[2, 42]

d

dt
J (xt ; x0) = κ(xt )J (xt ; x0) (2.4)

subject to an obvious initial condition J (x0; x0) = 1. Equation (2.4) can be solved by the
method of characteristics to yield

J (xt ; x0) = exp

[∫ t

0
ds κ(xs)

]
. (2.5)

If equation (2.1) are incompressible, as would be the case for a Hamiltonian system, then
equation (2.5) implies that J (xt ; x0) = 1 for all time, leading to Liouville’s theorem
dxt = dx0, which states that the phase-space volume measure is conserved. On the other
hand, if κ(x) �= 0, then the Jacobian will not be unity. However, equation (2.4) implies that
κ(xt ) = d ln J (xt ; x0)/dt . Of course, substituting this into equation (2.5) leads to a tautology,
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but if we let w(xt , t) be a function such that κ(xt ) = dw(xt , t)/dt , then equation (2.5) can be
expressed as

J (xt ; x0) = ew(xt ,t)−w(x0,0) = e−w(x0,0)

e−w(xt ,t)
. (2.6)

Now, if the phase space is allowed to have a nontrivial metric Gij with the determinant
g = det(G), then the Jacobian can be expressed in the familiar manner as a ratio of the square
root of metric determinant factors [6, 7, 25]

J (xt ; x0) =
√

g(x0, 0)√
g(xt , t)

(2.7)

and we can identify
√

g(xt , t) = exp(−w(xt , t)). Substitution of equation (2.7) into
equation (2.3) leads to a volume conservation law on a phase space with a nontrivial metric:√

g(xt , t) dxt =
√

g(x0, 0) dx0 e−w(xt ,t) dxt = e−w(x0,0) dx0. (2.8)

Equation (2.7) implies that the metric determinant
√

g(xt , t) satisfies an equation of motion
of the form

d

dt

√
g(xt , t) = −κ(xt )

√
g(xt , t). (2.9)

Note that if the compressibility of the system is zero, then J (xt , x0) = 1, and w(xt , t) = 0 and√
g(xt , t) = 1 for all time, and equation (2.8) reduces to the usual volume conservation law

dx0 = dxt . This shows that a system need not be Hamiltonian for usual volume conservation
law to apply. The preceding discussion allows for the most general situation, i.e. one in which
the metric possesses an explicit time dependence. The role of explicitly time-dependent
metrics in the analysis of dynamical systems has been discussed elsewhere [23, 24]. However,
the systems that will be considered involve metric factors that only depend on the phase-space
coordinates x with no explicit time dependence.

If the metric is properly included in the definition of the phase space, then it can be shown
that there exists a phase-space probability density f (xt , t) corresponding to an ensemble of
trajectories generated by equations (2.1) that is conserved, i.e. df/dt = 0 [42, 38]. If the
ensemble is an equilibrium ensemble, then ∂f/∂t = 0, so that f = f (x) has no explicit
time dependence. Moreover, if equations (2.1) possess Nc conservation laws of the form
�k(x) = Ck , k = 1, . . . , Nc, then, provided the motion described by equations (2.1) is
ergodic, the ensemble distribution that will be generated is of a general ‘microcanonical’
form [38]:

f (x) = N
Nc∏
k=1

δ(�k(x) − Ck) (2.10)

where N is a normalization constant. Thus, if the phase-space vector corresponds to an
extended phase space, involving the physical system variables and additional unphysical
variables, then when equation (2.10) is integrated over the latter, the phase-space distribution
in the physical variables is generated by the equations of motion can be determined. This
technique was used in [38] to analyse a wide variety of existing molecular dynamics algorithms
in order to determine which existing methods actually produced the ensemble distributions
they purported to with somewhat unexpected results which were also confirmed by numerical
simulations.

As noted earlier, the existence of a metric determinant
√

g(xt , t) on the phase space
implies the existence of a metric tensor Gij (x, t). Recently, Tarasov derived an equation of
motion for the full metric tensor that is consistent with equation (2.9) [33]. Denoting the
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components of x as x = (x1, . . . , xn) in an n-dimensional phase space, and the components
of the vector field ξ(x) as ξ(x) = (ξ 1(x), . . . , ξn(x)) (the use of contravariant indices is
intentional), the equation of motion for the phase-space metric tensor is [33]

∂Gij

∂t
=

∑
k

[
∂

∂xi
(Gjkξ

k) − ∂

∂xj
(Gikξ

k)

]
(2.11)

which yields a skew-symmetric metric as required on the phase space. This equation of motion
guarantees that the Jacobi identity

∂

∂xi
Gjk(x, t) +

∂

∂xj
Gki(x, t) +

∂

∂xk
Gij (x, t) = 0 (2.12)

is satisfied. The importance of the phase-space metric tensor is its use in the definition of a
Poisson bracket between two phase-space functions A(x) and B(x) on the non-Hamiltonian
phase space, which is given by

{A,B} =
∑
i,j

∂A

∂xi
Gij (x, t)

∂B

∂xj
(2.13)

where Gij (x, t) and and Gij (x, t) are related by∑
k

Gik(x, t)Gkj (x, t) = δi
j . (2.14)

A final note concerns the role of the metric in the symplectic condition. Consider the metric
tensor M for a Hamiltonian system

M =
(

0 −I
I 0

)
(2.15)

where I is an identity matrix of dimension n/2. The symplectic condition states the following:
if J denotes the Jacobian matrix of the transformation x0 −→ xt , then

JMJT = M (2.16)

where J T is the transpose of the Jacobian matrix. Written out in terms of matrix elements,
equation (2.16) becomes

Mij = ∂xk
t

∂xi
0

∂xl
t

∂x
j

0

Mkl. (2.17)

However, the right side of this equation determines how the metric tensor transforms under a
coordinate transformation x0 −→ xt . Thus, the symplectic condition is a statement that the
time evolution of the phase space of a Hamiltonian system preserves the form of the metric
tensor. It is, therefore, reasonable to assume that a properly defined metric tensor Gij (x) on a
non-Hamiltonian phase space would preserve its form under the exact time evolution, i.e.

Gij (x0) = ∂xk
t

∂xi
0

∂xl
t

∂x
j

0

Gkl(xt ). (2.18)

Equation (2.18) can be viewed as a generalization of the symplectic condition for a non-
Hamiltonian phase space. A proof of this result for flat phase spaces in arbitrary coordinates
was provided in [11]. The interested reader is referred to this work for detail of the proof. A
more general proof of this result is beyond the scope of the present paper but will be presented
in a forthcoming publication [36].

The above formalism defines the main objects needed to develop and analyse techniques
in non-Hamiltonian phase spaces. Although the discussion in the subsequent sections will
focus on geometric integration, we will need to refer to this formalism and its previously
reported application [38].
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3. Geometric integration and the Liouville operator

The approach that will be presented here for the development of geometric integrators of
non-Hamiltonian systems will be based on a generalization of the Liouville operator. The
use of this technique has been discussed extensively in the literature (see, for example,
[40, 19]) and will be used here to develop a new approach for the equations of motion of the
NPT ensemble. Before discussing this case, however, let us first review briefly the fundamental
concept.

The equations of motion equation (2.1) can be written in the form of an operator equation

ẋ = iLx (3.1)

where

iL = ξ(x) · ∇ (3.2)

is a generalization of the Liouville operator. When the equations of motion are expressed as
in equation (3.1), the evolution of an arbitrary initial condition x0 can be determined formally
according to

xt = eiLtx0 (3.3)

where the operator exp(iLt) is known as the classical propagator. Although equation (3.3) is
only a formal solution, it is, nevertheless, the starting point for the development of geometrical
integration schemes.

Consider a Hamiltonian system expressed in terms of Cartesian coordinates r1, . . . , rN ≡
r and momenta p1, . . . , pN ≡ p. If H(p, r) is the Hamiltonian, the equations of motion will
be given by Hamilton’s equations

ṙi = ∂H

∂pi

ṗi = −∂H

∂ri

. (3.4)

In this case, equation (3.2) becomes the true Liouville operator

iL =
N∑

i=1

[
∂H

∂pi

· ∂

∂ri

− ∂H

∂ri

· ∂

∂pi

]
. (3.5)

Thus, if H(p, r) is of the typical form

H(p, r) =
N∑

i=1

p2
i

2mi

+ U(r1, . . . , rN) (3.6)

where U(r1, . . . , rN) is an N-body potential, then equation (3.5) becomes

iL =
N∑

i=1

[
pi

mi

· ∂

∂ri

+ Fi · ∂

∂pi

]
(3.7)

where Fi = −∂U/∂ri is the force on particle i.
Although the propagator cannot be evaluated exactly, note that the operator in

equation (3.7) naturally separates into two contributions, iL = iL1 + iL2, where

iL1 =
N∑

i=1

pi

mi

· ∂

∂ri

iL2 =
N∑

i=1

Fi · ∂

∂pi

. (3.8)

This separation allows the Trotter [35, 5] theorem to be applied

eiLt = lim
M→∞

[eiL2t/2M eiL1t/M eiL2t/2M ]M (3.9)
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where M is an integer. For finite M, the Trotter theorem leads to an approximate propagator
for a small time interval �t :

eiL�t = eiL2�t/2 eiL1�t eiL2�t/2 + O(�t3). (3.10)

The symmetric form of this factorization ensures that the resulting integrator will be symplectic
as required for a Hamiltonian system. Note that, although the error in one step is of order �t3,
the global error in a long trajectory is of order �t2. It can be shown that the application of the
factorized operator in equation (3.10) on the initial phase space yields the familiar velocity
Verlet integrator [40, 19]:

ri (�t) = ri (0) + �t
pi (0)

mi

+
�t2

2mi

Fi (r(0))

pi (�t) = pi (0) +
�t

2
[Fi (r(0)) + Fi (r(�t))].

(3.11)

The only identity needed to derive this result is the action of an operator of the form exp(c∂/∂y),
for c independent of y, on a function f (y):

exp

(
c

∂

∂y

)
f (y) = f (y + c) (3.12)

which demonstrates that the operator acts as a translation operator. By computing the
Jacobian matrix of equations (3.11), it can be shown that this integrator is symplectic and,
therefore, preserves the phase-space volume. In addition, it is not necessary to derive closed-
form expressions for integrators based on factorizations of the classical propagator, such as
equation (3.10). In fact, the same algorithm results if each operator in equation (3.10) is
‘translated’ directly into an instruction in computer code, in this case, each instruction is a
simple translation either of position or momentum. This idea was introduced in [19] and is
known as the direct translation technique.

We note, additionally, that the Liouville operator formalism allows systems with motion
on several time scales to be integrated using a multiple time-step approach [40]. Suppose
the force Fi can be expressed as a sum of two components F(1)

i + F(2)
i , where F(1)

i is a
rapidly varying force and F(2)

i is slowly varying. We seek to introduce two time steps δt

and �t = nδt appropriate for the fast and slow components, respectively, into a geometric
integration scheme. In order to accomplish this, we define the following contributions to the
Liouville operator:

iL(1)
1 =

N∑
i=1

pi

mi

· ∂

∂ri

iL(2)
1 =

N∑
i=1

F(1)
i · ∂

∂pi

iL2 =
N∑

i=1

F(2)
i · ∂

∂pi

(3.13)

and factorize the propagator according to the two time-step scheme:

eiL�t = eiL2�t/2(eiL(2)
1 δt/2 eiL(1)

1 δt eiL(2)
1 δt/2)n

eiL2�t/2 + O(�t3) (3.14)

which is known as the reversible reference system propagator algorithm (r-RESPA) [40]. As
the name suggests, the two contributions to iL1 act as a kind of ‘reference system’ described
by the force F(1)

i . Thus, the operator in brackets is applied for n steps of size δt according to the
scheme of equation (3.11) with the operator exp(iL2�t/2) acting as a momentum correction
factor before and after this reference system integration is performed. Since many problems
in molecular dynamics involve computationally inexpensive fast forces and expensive slow
forces, the use of such a scheme can reduce the overall computational overhead of a calculation
by reducing the total number of slow force evaluations.
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The theoretical underpinning of the above approach lies in the fact that the error can be
proved to be bounded. Denoting the factorized propagator in equation (3.10) as exp(iL̃�t), it
can be shown from the Baker–Campbell–Hausdorf (BCH) formula [35, 43] that

exp(iL̃�t) = exp

[
�t

(
iL +

∞∑
k=1

�t2kCk

)]
(3.15)

where the corrections Ck are expressible in terms of nested commutators of the Liouville
operators iL1 and iL2. For example, it can be shown that C1 is given by

C1 = 1
24 [iL2 + 2iL1, [iL2, iL1]]. (3.16)

More importantly, it can be shown [4] that in a Hamiltonian system, commutators between
Liouville operators yield new Liouville operators derivable from the Poisson brackets between
the corresponding Hamiltonians. Thus, if H = H1 + H2 and iL = iL1 + iL2 are the
corresponding contributions to the total Liouville operator, then iL3 = [iL1, iL2] is a Liouville
operator derivable from the Hamiltonian H3 = {H1,H2}. Thus, the operator in equation (3.16)
is the Liouville operator for a Hamiltonian of the form

H̃ 1 = 1
24 {H2 + 2H1, {H2,H1}}. (3.17)

Similarly, every Ck in equation (3.15) is the Liouville operator corresponding to a Hamiltonian
denoted H̃ k obtained from a nested Poisson bracket structure of the same form as the nested
commutator structure that determines Ck . Consequently, there is a Hamiltonian H̃ (p, r;�t)

expressible as

H̃ (p, r;�t) = H(p, r) +
∞∑

k=1

�t2kH̃ k(p, r) (3.18)

that is exactly conserved by the propagator in equation (3.15). Note that this Hamiltonian
depends on the time step �t , reduces to the true Hamiltonian in the limit �t → 0 and
only exists for symplectic propagation schemes. The dynamics of the propagator exp(iL̃t) is
exactly specified by Hamilton’s equations in the form

ṙi = ∂H̃

∂pi

ṗi = −∂H̃

∂ri

. (3.19)

The existence of a Hamiltonian H̃ (p, r;�t) means that the error in the integrator is bounded,
since |H̃ (p, r;�t) − H(p, r)| is, itself, bounded, and H̃ (p, r;�t) is exactly conserved. As
an example, an exact closed-form expression for H̃ exists for a simple harmonic oscillator of
mass m and frequency ω. If p and q are the momentum and coordinate of the oscillator, and
the Hamiltonian is

H = p2

2m
+

1

2
mω2q2 (3.20)

then it can be shown that the Hamiltonian H̃ that is exactly conserved by the velocity Verlet
integrator is given by

H̃ (p, q;�t) =
(
p2

[
1 − (

ω�t
2

)2]−1/2

2m
+

mω2q2
[
1 − (

ω�t
2

)2]1/2

2

)
arccos

(
1 − ω2�t2

2

)
|ω�t | . (3.21)

Although a closed form for H̃ exists for the harmonic oscillator, convergence of
equation (3.18) for nonlinear systems is generally not guaranteed [8], in which case, a truncated
series can be employed in practice [30, 12, 8].
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Before closing this section, we note that the above formalism has not been fully
generalized for non-Hamiltonian systems, although presumably such a generalization could
be accomplished if a procedure for determining the metric tensor of a non-Hamiltonian
phase space existed. At present, no such a method exists. It is, nevertheless, clear that a
properly formulated geometric integrator for a non-Hamiltonian system should, as a minimum
condition, preserve the volume conservation law equation (2.8). It has been shown that an
approach based on the generalized Liouville operator can be made to satisfy this condition
while those derived from a Taylor series expansion generally cannot [39]. Indeed, various
algorithms derived from a Taylor series approach have been introduced in the literature
[18, 17, 13] and are currently in use, yet they do not satisfy equation (2.8). Nevertheless, it
is also clear that additional fundamental work is needed to generalize the Liouville-operator
based approach to arbitrary non-Hamiltonian systems in order to ensure that volume-preserving
factorizations can be generated via a well-defined procedure, since ad hoc factorizations may
well fail to satisfy equation (2.8). However, until such a theory is available, it is always
necessary to check each integration scheme carefully for its adherence to equation (2.8). In
what follows, the use of factorization schemes on the classical propagator will be employed,
and appropriate checks will be presented.

4. Integrating the Nosé–Hoover chain equations for the NVT ensemble

In the molecular dynamics literature, a well-known dynamical scheme that purports to generate
a canonical distribution is the so-called Nosé–Hoover method [9]. Although this method can
be shown to generate a proper NVT ensemble under very special circumstances [9, 18, 38], the
failure of this approach under the conditions usually used in molecular dynamics calculations
was made clear in [38]. It was shown by Martyna et al that the shortcomings of the Nosé–
Hoover algorithm could be overcome by a generalization of the approach in the form of the
Nosé–Hoover chain equations [18]. In this scheme, the physical phase space is supplemented
by a set of heat-bath variables η1, . . . , ηM, pη1 , . . . , pηM

, which serve to drive the fluctuations
of the kinetic energy in such a way that they average to the proper canonical value. The
equations of motion are

ṙi = pi

mi

ṗi = Fi − pη1

Q1
pi η̇k = pηk

Qk

k = 1, . . . ,M

ṗηk
= Gk − pηk+1

Qk+1
pηk

ṗηM
= GM

where the heat-bath ‘forces’ are given by

G1 =
N∑

i=1

p2
i

mi

− 3NkT Gk = p2
ηk−1

Qk−1
− kT . (4.1)

The parameters Q1, . . . ,QM are mass-like parameters (having units of energy × time2) that
determine the time scale on which the heat-bath variables evolve. The physics embodied in
equations (4.1) is based on the fact that the term −(

pη1/Q1
)
pi in the momentum equation acts

as a kind of dynamic frictional force. Although the average
〈
pη1

〉 = 0, instantaneously, pη1

can be positive or negative and, therefore, act to damp or boost the momentum. According to
the equation for pη1 , if the kinetic energy is larger than 3NkT/2, pη1 will increase and have a
greater damping effect on the momenta, while if the kinetic energy is less than 3NkT/2, pη1

will decrease and have a greater boosting effect on the momenta. In this way, the NHC system
acts as a ‘thermostat’ regulating the kinetic energy so that its average is the correct canonical



5638 M E Tuckerman et al

value. In a similar manner, the (k + 1) th heat-bath variable serves to modulate the fluctuations
in the kth variable so that each heat-bath variable (except the Mth variable) is ‘driven’ to have
a proper canonical average.

Equations (4.1) have the conserved energy

H ′ = H(p, r) +
M∑

k=1

p2
ηk

2Qk

+ 3NkT η1 + kT

M∑
k=2

ηk (4.2)

and a compressibility

κ(x) = −3Nη̇1 −
M∑

k=2

η̇k (4.3)

and therefore a phase-space metric
√

g = exp(3Nη1 + · · · + ηM). In addition, if there are
no external forces acting on the system, then

∑
i Fi = 0 and three additional conservation

laws exist of the form K = P exp(η1) where P = ∑
i pi is the momentum of the centre of

mass. In [38], it was shown how to prove, using the metric, the conservation laws, and the
formalism outlined in section 2 that the NHC equations generate a proper canonical phase-
space distribution in the physical coordinates and momenta. Note that if a separate NHC
thermostat is coupled to each particle or even to each degree of freedom in the system, the K
conservation law no longer exists.

In order to develop a numerical integration algorithm for the NHC equations, it is important
to keep in mind the modified Liouville theorem, equation (2.8). The complexity of the
NHC equations is such that a Taylor series approach like that employed in [13] cannot be
employed to derive a satisfactory integrator, i.e., one that does not lead to substantial drifts
in the conserved energy [39]. Indeed, such an approach can be easily shown to violate
equation (2.8). Thus, the NHC system is an example of a problem on which the power of
the Liouville operator method can be brought to bear. We begin by writing the total Liouville
operator for equations (4.1) as

iL = iL1 + iL2 + iLT (4.4)

where iL1 and iL2 are given by equation (3.8) and

iLT =
M∑

k=1

[
pηk

Qk

∂

∂ηk

+ Gk

∂

∂pηk

]
−

N∑
i=1

pη1

Q1
pi · ∂

∂pi

−
M−1∑
k=1

pηk+1

Qk+1
pηk

∂

∂pηk

. (4.5)

The propagator is now factorized in a manner very similar to the velocity Verlet algorithm:

eiL�t = eiLT�t/2 eiL2�t/2 eiL1�t eiL2�t/2 eiLT�t/2 + O(�t3). (4.6)

The only new feature in this scheme is the operator exp(iLT�t/2). Thus, the local error is still
�t3. Application of this operator to the phase space requires some care. Clearly, it needs to
be further factorized into individual operators that can be applied analytically. However, the
NHC equations constitute a set of differential equations with a time-scale separation between
the particles and the thermostats and, therefore, a simple O(�t3) factorization scheme of the
operator will not be accurate enough [19]. Thus, for this operator, a higher-order factorization
is needed. Note that the overall integrator will still be O(�t3) despite the use of a higher-order
method on the thermostat operator. The higher-order method we choose is the Suzuki–
Yoshida (SY) scheme [44, 32], which involves the introduction of weighted time steps,
wj�t, j = 1, . . . , nsy, the value of nsy determines the order of the method. The weights wj

are required to satisfy
∑nsy

j=1 wj = 1 and are chosen so as to cancel out the lower-order error
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terms. Applying the SY scheme, the operator exp(iLT�t/2) becomes

eiLT�t/2 =
nsy∏
j=1

[eiLTwj �t/2]. (4.7)

The need to choose a large value of nsy can be avoided by simply cutting the time step by a
factor of nc and applying the operator in equation (4.7) nc times, i.e.

eiLT�t/2 =
nc∏

i=1

nsy∏
j=1

[eiLTwj �t/2nc ]. (4.8)

In this way, both nc and nsy can be adjusted so as to minimize the number of operations needed
for satisfactory performance of the overall integrator. Having introduced the above scheme, it
only remains to specify a particular factorization of the operator exp(iLTwj�t/2nc). Defining
δj = wj�t/nc, we choose the following factorization [19]:

exp

[
iLT

δj

2

]
= exp

[
δj

4
GM

∂

∂pηM

] 1∏
k=M−1

[
exp

[
−δj

8

pηk+1

Qk+1
pηk

∂

∂pηk

]
exp

[
δj

4
Gk

∂

∂pηk

]

× exp

[
−δj

8

pηk+1

Qk+1
pηk

∂

∂pηk

]] N∏
i=1

exp

[
−δj

2

pη1

Q1
pi · ∂

∂pi

]

×
M∏

k=1

exp

[
−δj

2

pηk

Qk

∂

∂ηk

] M−1∏
k=1

[
exp

[
−δj

8

pηk+1

Qk+1
pηk

∂

∂pηk

]

× exp

[
δj

4
Gk

∂

∂pηk

]
exp

[
−δj

8

pηk+1

Qk+1
pηk

∂

∂pηk

]]
exp

[
δj

4
GM

∂

∂pηM

]
. (4.9)

Although the overall scheme may seem complicated, the use of the direct translation technique
simplifies the job of coding the algorithm. All of the operators appearing in equation (4.9) are
either translation operators or operators of the form exp(cx∂/∂x), the action of which is

exp

[
cx

∂

∂x

]
x = xec. (4.10)

We call such operators scaling operators, because the effect is to multiply x by an x-independent
factor ec. We note, finally, that multiple time-step integration can be incorporated into the
NHC scheme by replacing the central three operators in equation (4.6) with the decomposition
in equation (3.14) [19].

5. Integrating the MTK equations for the NPT ensemble

Having discussed the NHC equations of motion for generating the NVT ensemble, we are
now in a position to introduce the MTK [17] equations for generating the NPT ensemble
and a geometric scheme for integrating them. Although a geometric integrator for the MTK
equations was introduced in [19], this scheme deviates slightly from the requirements of
equation (2.8) and leads to other technical difficulties owing to the manner in which the
classical propagator was factorized. Thus, here we present a scheme that exactly satisfies
equation (2.8), reduces the technical complexities, and is considerably simpler to implement
than that presented in [19].
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The MTK equations allow the volume V to evolve dynamically while additionally
providing a ‘barostat’ control to drive the fluctuations in the internal pressure estimator

Pint = 1

3V

[
N∑

i=1

p2
i

mi

+
N∑

i=1

ri · Fi − 3V
∂U

∂V

]
(5.1)

in addition to a thermostat control that drives the kinetic energy fluctuations. For a system
with no constraints, the equations of motion take the form

ṙi = pi

mi

+
pε

W
ri ṗi = Fi −

(
1 +

1

N

)
pε

W
pi − pη1

Q1
pi

V̇ = dV

W
pε ṗε = 3V (Pint − P) +

1

N

N∑
i=1

p2
i

mi

− pξ1

Q′
1

pε

η̇k = pηk

Qk

k = 1, . . . ,M ṗηk
= Gk − pηk+1

Qk+1
pηk

ṗηM
= GM ξ̇k = pξk

Q′
k

k = 1, . . . ,M

ṗξk
= G′

k − pξk+1

Q′
k+1

pξk
ṗξM

= G′
M.

(5.2)

In equations (5.2), the variable pε with mass parameter W (having units of energy × time2)
corresponds to the barostat, coupling both to the positions and the momenta. Moreover, note
that two Nosé–Hoover chains are coupled to the system, one to the particles and the other to
the barostat. This device is particularly important, as the barostat tends to evolve on a much
slower time scale than the particles. The heat-bath forces G′

k are defined by

G′
1 = p2

ε

W
− kT G′

k = p2
ξk−1

Q′
k−1

− kT . (5.3)

The MTK equations have the conserved energy

H ′ = H(p, r) +
p2

ε

2W
+ PV +

M∑
k=1

(
p2

ηk

2Qk

+
p2

ξk

2Q′
k

)
+ 3NkT η1 + kT

M∑
k=2

ηk + kT

M∑
k=1

ξk (5.4)

and a phase-space metric factor

√
g(x) = exp

(
3Nη1 +

M∑
k=2

ηk +
N∑

k=1

ξk

)
. (5.5)

In addition, if
∑

i Fi = 0, then three additional conservation laws of the form K =
exp[(1 + 1/N)ε + η1], where ε = (1/3) ln(V/V0). In order to prove that the MTK equations
generate a correct isothermal–isobaric distribution, one needs to substitute equations (5.5) and
the conservation laws into equation (2.10) and perform the integrals over all of the heat-bath
variables and pε following the same procedure as was done for the canonical ensemble [38].
Again, if a separate NHC thermostat is coupled to each particle or to each degree of freedom,
then the K conservation law no longer exists.

Integrating the MTK equations is only slightly more difficult than integrating the NHC
equations and builds on the technology already developed. Introducing, again, the variable
ε = (1/3) ln(V/V0) and writing the total Liouville operator as

iL = iL1 + iL2 + iLε,1 + iLε,2 + iLT-baro + iLT-part (5.6)
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where

iL1 =
N∑

i=1

[
pi

mi

+
pε

W
ri

]
· ∂

∂ri

iL2 =
N∑

i=1

[
Fi − α

pε

W
pi

]
· ∂

∂pi

iLε,1 = pε

W

∂

∂ε
iLε,2 = Gε

∂

∂pε

(5.7)

and iLT-part and iLT-baro are defined in an analogous manner to equation (4.5). In
equation (5.7), α = 1 + 1/N , and

Gε = α
∑

i

p2
i

mi

+
N∑

i=1

ri · Fi − 3V
∂U

∂V
− PV. (5.8)

The propagator is factorized in a manner that bears a very close resemblance to that of the
NHC equations, namely

exp(iL�t) = exp

(
iLT-baro

�t

2

)
exp

(
iLT-part

�t

2

)
exp

(
iLε,2

�t

2

)
exp

(
iL2

�t

2

)

× exp
(
iLε,1�t

)
exp (iL1�t) exp

(
iL2

�t

2

)
exp

(
iLε,2

�t

2

)

× exp

(
iLT-part

�t

2

)
exp

(
iLT-baro

�t

2

)
+ O(�t3). (5.9)

In evaluating the action of this propagator, the Suzuki–Yoshida decomposition already
developed for the NHC equations, together with equation (4.9) is applied to the operators
exp(iLT-baro�t/2) and exp(iLT-part�t/2). The operators exp(iLε,1�t) and exp(iLε,2�t/2)

are simple translation operators. The operators exp(iL1�t) and exp(iL2�t/2) are somewhat
more complicated than their microcanonical or canonical ensemble counterparts due to the
barostat coupling. The action of the operator exp(iL1�t) can be determined by solving the
differential equation

ṙi = vi + vεri (5.10)

for constant vi = pi/mi and constant vε = pε/W for an arbitrary initial condition ri (0) and
evaluating the solution at t = �t . This yields the evolution

ri (�t) = ri (0) evε�t + �tvi evε�t/2 sinh(vε�t/2)

vε�t/2
. (5.11)

Similarly, the action of exp(iL2�t/2) can be determined by solving the differential equation

v̇i = Fi

mi

− αvεvi (5.12)

for constant Fi and an arbitrary initial condition vi (0) and evaluating the solution at t = �t/2.
This yields the evolution

vi (�t/2) = vi (0) e−αvε�t/2 +
�t

2mi

Fi e−αvε�t/4 sinh(αvε�t/4)

αvε�t/4
. (5.13)

In practice, the factor sinh(x)/x should be evaluated by a power series for small x to avoid
numerical instabilities. These equations together with the Suzuki–Yoshida factorization of
the thermostat operators completely define an integrator for the isothermal–isobaric ensemble
that can be shown to satisfy equation (2.8). The integrator can be easily coded using the direct
translation technique.
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The new NPT integrator can also be applied within the r-RESPA framework. For two
time steps, δt and �t = nδt , the following contributions to the total Liouville operator are
defined,

iL1 =
N∑

i=1

[
pi

mi

+
pε

W
ri

]
· ∂

∂ri

iL(1)
2 =

N∑
i=1

[
F(1)

i − α
pε

W
pi

]
· ∂

∂pi

iL(2)
2 =

N∑
i=1

F(2)
i · ∂

∂pi

iLε,1 = pε

W

∂

∂ε

iL(1)
ε,2 = G(1)

ε

∂

∂pε

iL(2)
ε,2 = G(2)

ε

∂

∂pε

(5.14)

where superscripts 1 and 2 are for the fast and slow contributions, respectively and,

G(1)
ε = α

∑
i

p2
i

mi

+
N∑

i=1

ri · F(1)
i − 3V

∂U(1)

∂V
− 3P (1)V (5.15)

G(2)
ε =

N∑
i=1

ri · F(2)
i − 3V

∂U(2)

∂V
− 3P (2)V . (5.16)

The variables P (1) and P (2) should be chosen such that the external pressure P = P (1) + P (2).
(In the next section, three different possible ways of subdividing the applied external pressure
will be investigated.) The factorization scheme for the propagator is

exp(iL�t) = exp

(
iLT-baro

�t

2

)
exp

(
iLT-part

�t

2

)
exp

(
iL(2)

ε,2

�t

2

)
exp

(
iL(2)

2

�t

2

)

×
[

exp

(
iL(1)

ε,2

δt

2

)
exp

(
iL(1)

2

δt

2

)
exp

(
iLε,1δt

)
exp (iL1δt)

× exp

(
iL(1)

2

δt

2

)
exp

(
iL(1)

ε,2

δt

2

)]n

exp

(
iL(2)

2

�t

2

)
exp

(
iL(2)

ε,2

�t

2

)

× exp

(
iLT-part

�t

2

)
exp

(
iLT-baro

�t

2

)
+ O(�t3). (5.17)

Note that, because Gε depends on the forces, Fi , it is necessary to update both the particles
and the barostat in the reference system.

6. Illustration and analysis of the new NPT integrator

In order to illustrate the new NPT integrator and analyse its structure, we consider the simple
example of a single particle with coordinate q and momentum p moving in a one-dimensional
periodic potential of the form

U(q) = mω2V 2

4π2

[
1 − cos

(
2πq

V

)]
. (6.1)

Here, V is the volume of the one-dimensional box. The NPT equations of motion for this
problem are integrated using a time step of �t = 0.05. Other parameters are chosen to be

nc = 4, nsy = 3,M = 2,m = 1, ω = 1,W = 18, kT = 1, P = 1,Qk = 1, and Q′
k =

√
1

20 .
Figure 1 shows the position and volume distributions generated from the simulation together
with their analytic values. It can be seen from the figure that these distributions are perfectly
generated.
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Figure 1. Comparison of the position (top) and volume (bottom) distribution functions from the
numerical simulation of equations (5.2) integrating using equation (5.9).

In the appendix, we perform an analysis of the Jacobian of the new NPT integrator,
calculating it both analytically and using the above example to demonstrate numerically that
the proper phase-space Jacobian is generated and, therefore, that the generalized Liouville
theorem in equation (2.8) is obeyed.

7. Additional examples

The new NPT algorithm is also applied to study two realistic models using molecular dynamics
simulations: a simple Lennard–Jones (LJ) fluid and a fluid of flexible diatomic molecules
interacting via the LJ potential. In the latter case, the multiple time scale r-RESPA method
[40] is employed.

7.1. Lennard–Jones fluid

The simulations were performed using reduced units (ε/k = 119.8 K, σ = 3.405 and
m = 39.95 g mol−1). The system contains N = 256 particles in a cell with periodic boundary
conditions (PBC) in all directions at T ∗ = 1.4 and P ∗ = 1.279. This state is above the critical
point. The pressure was obtained from an NVT simulation at ρ∗ = 0.7 using the same number
of particles [16]. The dispersion interactions were calculated using the lattice sum method or
Ewald-type summation applied to 1/r6 interactions. Thus, the results are independent of the
cut-off distance. The simulations were performed using a reduced time step �t∗ = 0.002. In
addition to a thermostat on pε , a separate NHC thermostat was applied to each particle in the
fluid. Thus, the thermostat and barostat time scale parameters W,Qp and Qb were determined
by the recommended formula [18, 19]:

Q1
p = Q1 = 3kT τ 2

p Qk
p = Qk = kT τ 2

p

Q1
b = Q′

1 = kT τ 2
b Qk

b = Q′
k = kT τ 2

b

W = (3N + 3)kT τ 2
b

(7.1)
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Figure 2. Density distribution for LJ fluids for two set of (τ ∗
p, τ ∗

b ). The solid line is for (0.2,0.2)
and dashed line for (2.0,0.2).

where τp and τb are characteristic time scales of the particles and barostat, respectively.
Typically, τp and τb can be chosen directly proportional to the time step �t . In the present
simulations, two sets of thermostat and barostat parameters were used to evaluate the error in
the conserved quantity equation (5.4), denoted �E = 1

Nc

∑
i |(Ei − E0)/E0|, where i runs

over the number of configurations Nc. The first set of parameters was τ ∗
p = τ ∗

b = 100�t∗

for which it was found that �E = 4.2 × 10−5 over a run of length two million steps. By
changing τ ∗

b or τ ∗
p to 1000�t∗ an improvement in the energy conservation was observed with

�E = 5.0 × 10−6 and �E = 4.7 × 10−7, respectively. No drift in the conserved quantity
was observed in any of the simulations.

The systems were equilibrated for 5×105 time steps and additional 2×106 configurations
were used to obtain the average properties. The average kinetic energy and pressure
fluctuations were found to converge in a satisfactory manner to the imposed temperature
T and pressure P. In all simulations, the average density was 〈ρ∗〉 = 0.70 ± 0.02 and the
average potential energy 〈U ∗〉 = −4.63 ± 0.12 (compared with 〈U ∗〉 = −4.634 ± 0.009 from
NVT simulations [16]). These results show that both ensembles yield equivalent equilibrium
thermodynamics. Figure 2 shows the density distributions obtained in the NPT simulations
using two set of parameters (τ ∗

p , τ ∗
b ), (0.2, 0.2) and (2.0, 0.2). Although the errors were

different, the density distributions are seen to be nearly the same. The slight difference
between the distributions most likely indicate the need for somewhat longer runs.

7.2. A LJ fluid of flexible diatomic molecules

The next illustrative example is a fluid of flexible diatomic molecules interacting via a LJ
potential. Each diatomic molecule contains two equal-sized atoms with a harmonic bond
potential Ub(r) = kr(r − r0)

2/2, where r is the distance between particles, kr is the spring
constant and r0 is the equilibrium distance. The system contains N = 256 molecules in a
box with PBCs at supercritical conditions. The atoms of different molecules interact via a LJ
potential with parameters ε/k = 104 K and σ = 3.91 Å; these values are similar to those
used to simulate hydrocarbons. The simulations were performed in reduced units. The cut-off
distance, r∗

c = rc/σ of 4 was used and the force F(r) was switched smoothly from r∗
c − r∗

s = 3.7
to r∗

c as recommended in [37] by multiplying the force by a switching function S(r). The use
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Figure 3. Error in the conserved quantity as a function of number of configurations for the fluid
of flexible diatomics using n = 4, P (1) = nP/(n + 1) and P (2) = P/(n + 1).

of a switch eliminates possible discontinuities in the pressure estimator due to the finite-size
cut-off radius and allows a constant cut-off to be used rather than a volume-dependent cut-off.
The switching function is given by S(r) = 1 + λ2(2λ − 3), where λ = (r − (rc − rs)/rs). The
other parameters were taken to be k∗

r = 846.5, r∗
0 = 0.394,�t∗ = 0.0001, τ ∗

p = 20�t∗ and
τ ∗
b = 100�t∗. The external temperature and pressure were fixed to T ∗ = 5.0 and P ∗ = 1.5.

The system was equilibrated for 2 × 105 time steps and the average properties were calculated
for additional 2 × 106 steps.

The first simulation was carried out using a single time step and yielded an average
density of ρ∗ = 0.569 and configurational energy of U ∗ = −1.851. During this simulation, the
average of P (1) = (

α
∑

i miv2
i +

∑
i F(1)

i ·ri

)/
3 V and P (2) = ∑

i F(2)
i ·ri/3 V were calculated,

where F(1) represents the intramolecular harmonic force and F(2) represents the intermolecular
LJ force.The calculated values were P (1)∗ = 1.79 and P (2)∗ = −0.29, respectively. As
expected, the sum of these two estimators P ∗ = P (1)∗ + P (2)∗ yields the applied external
pressure of 1.5.

The fluid of flexible diatomics is a good test system for the multiple time-scale NPT
method. Here, a small time step δt∗ is chosen for the fast intramolecular forces F(1) and a
larger time step �t∗ is chosen the slower intermolecular LJ interactions F(2). Here, δt∗ can
be chosen to be the time step 0.0001 used in the above single time-step simulation, while
�t∗ = nδt is chosen to be a factor n times larger. The thermostat and barostat parameters had
the same ratio with �t∗ as in the simulation with one time step. To perform the simulations
using different time steps, it is necessary to calculate Gε = α

∑
i miv2

i + g(1) + ng(2) where
g(1) = ∑

i F(1)
i · ri − 3P (1)V and g(2) = ∑

i F(2)
i · ri − 3P (2)V . The term ng(2) is only added

when the slow forces are evaluated. Three options were analysed to choose P (1)∗ and P (2)∗:
(A) P (1)∗ = P ∗ and P (2)∗ = 0, (B) P (1)∗ = nP ∗/(n + 1) and P (2)∗ = P ∗/(n + 1) and (C)
P (1)∗ = 1.79 and P (2)∗ = −0.29. Table 1 gives the simulation results for these three options
using n = 4. Figure 3 shows the error in the conserved quantity for option B. The three
simulations conserve the energy in equation (5.4) without a drift and give essentially the same
results as those obtained from a single time step. The option B might be better in the simulation
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Table 1. Results for a fluid of flexible diatomic molecules obtained using the new NPT integrator.
Here, the calculated temperature, pressure, potential energy, density and energy conservation
measure �E are reported.

System A B C

T ∗ 5.0 5.0 5.0
〈P ∗

int〉 1.5 1.5 1.5
〈U∗〉 −1.853 −1.853 −1.851
〈ρ∗〉 0.571 0.570 0.571
�E 3.1 × 10−6 2.9 × 10−6 2.7 × 10−6

Table 2. Results for a fluid of flexible diatomic molecules obtained using the new NPT integrator
with two time steps for different values of n. P (1)∗ = nP ∗/(n + 1) and P (2)∗ = P ∗/(n + 1).

n 1 2 4 8

T ∗ 5.0 5.0 5.0 5.0
〈P ∗

int〉 1.5 1.5 1.5 1.5
〈U∗〉 −1.851 −1.843 −1.853 −1.848
〈ρ∗〉 0.569 0.569 0.570 0.570
�E 2.8 × 10−6 2.9 × 10−6 2.9 × 10−6 3.2 × 10−6

of molecular fluids using r-RESPA because the external pressure is split between the different
force contributions. Table 2 gives results for different values of n using the option B.

8. Conclusions

The isothermal–isobaric (NPT) molecular dynamics approach has been re-examined for the
purpose of developing a new measure-preserving, reversible geometric integrator that improves
on previously introduced integrators. In the context of developing the new approach, we
have reviewed the underlying statistical mechanical theory of non-Hamiltonian phase spaces,
the Liouville operator formalism and the symplectic property of Hamiltonian systems. It
was pointed out that gaps still exist in the generalization of Hamiltonian concepts to non-
Hamiltonian systems.

The new NPT integrator was shown to satisfy the volume conservation law of
equation (2.8) and was observed to perform well on realistic problems. The method was also
extended to include multiple time steps for systems with motion on several time scales. Future
work will include generalizing the scheme for fully flexible cell fluctuations, incorporation
of holonomic constraints into the scheme, substitution of thermal control methods other than
the Nosé–Hoover chain approach used here, and incorporation of the new approach into the
multiple time-step isokinetic scheme recently introduced by Minary et al [20].
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Appendix. Analysis of the Jacobian

In this appendix the analytical derivation of the Jacobian of transformation for a potential
U(q) with the force F(q) = −dU/dq is presented. The analysis is based on the factorization
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scheme of equation (5.9) with equation (4.9) used to factorize the thermostat operators. For
simplicity, we set nsy = nc = 1 in the Suzuki–Yoshida scheme; however, it does not affect the
basic conclusion. We also choose the length M of Nosé-Hoover chains to be 2 for concreteness.
Finally, for further simplicity, we set Q1 = Q2 = Q′

1 = Q′
2 = 1.

With these parameters, the total number of operators in the factorization is 50; however,
if the scaling and translation operations in equation (4.9) are combined into one, then the total
number of operators reduces to 34. Finally, the phase-space vector x contains the 12 variables

x = (p, pη1 , pη2 , pξ1 , pξ2 , pε, q, η1, η2, ξ1, ξ2, V ). (A.1)

Each operator can be regarded as a specific transformation on the phase space, and thus, the
product of operators produces a series of transformations

x(0) → x(1) → · · · x(34) (A.2)

where x(34) = x(�t). The overall Jacobian matrix of the full transformation produced by the
factorization of the one-time-step propagator is the product of the Jacobian matrices of each
individual transformation step

Jtot =
34∏

α=1

Jα (A.3)

where,

J ij
α = ∂xi(α)

∂xj (α − 1)
. (A.4)

Consequently, the total Jacobian determinant will be a product of the determinants of the
individual Jacobian matrices

det(Jtot) =
34∏

α=1

det(Jα). (A.5)

Since each individual step changes only one variable at a time, the individual Jacobian matrices
are simple to calculate. In fact, they will differ from identity matrices by only one element
for each transformation. For example, the first variable transformed is pξ2 , which transforms
according to

pξ2(1) = pξ2(0) +
�t

4
Gξ2(0). (A.6)

All other variables remain unchanged. Since Gξ2 depends on pξ1 , the only element of J1 that
will differ from the identity matrix is the J 12

1 element. This element is given by

J 12
1 = �t

2
pξ1(0) (A.7)

and det(J1) = 1.
The second variable transformed in the steps x(1) → x(2) is pξ1 , which transforms as

pξ1(2) = pξ1(1) e−�tpξ2 (1)/4 +
�t

4
Gξ1 e−�tpξ2 (1)/8 (A.8)

(recall that scaling and translation operators have been combined). All other variables retain
their values from the previous step. Thus, the Jacobian matrix of this transformation has only
two elements that differ from the identity matrix, J 21

2 and J 22
2 . These elements are given by

J 21
2 = −�t

4
pξ1(1) e−�tpξ2 (1)/4 − �t2

32
Gξ1(1) e−�tpξ2 (1)/8

J 22
2 = e−�tpξ2 (1)/4.

(A.9)
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Hence, the Jacobian of this matrix is easily seen to be

det(J2) = e−�tpξ2 (1)/4. (A.10)

Repeating this procedure 32 more times for each step of the integrator yields the overall
Jacobian of the integrator:

det(Jtot) = e−�t(pξ2 (1)+pξ2 (5)+pξ2 (28)+pξ2 (32)+pη2 (8)+pη2 (12)+pη2 (21)+pη2 (25))/4

× e−�t(pξ1 (4)+pξ1 (31)+pη1 (11)+pη1 (24))/2 e−�t(
pε (15)

W
−ε(16)− pε (17)

W
+ pε (18)

W
). (A.11)

However, recognizing that
pξ2(1) = pξ2(�t/4) pξ2(5) = pξ2(�t/4)

pξ2(28) = pξ2(3�t/4) pξ2(32) = pξ2(3�t/4)

pη2(8) = pη2(�t/4) pη2(12) = pη2(�t/4)

pη2(21) = pη2(3�t/4) pη2(25) = pη2(3�t/4)

pξ1(4) = pξ1(�t/4) pξ1(31) = pξ1(3�t/4)

pη1(11) = pη1(�t/4) pη1(24) = pη1(3�t/4)

(A.12)

and,
1

2
(ξ2(�t/2) − ξ2(0)) = �t

4
pξ2(�t/4)

1

2
(ξ2(�t) − ξ2(�t/2)) = �t

4
pξ2(3�t/4)

ξ2(�t) − ξ2(�t/2) + ξ2(�t/2) − ξ2(0) = �t

2
(pξ2(�t/4) + pξ2(3�t/4))

ξ2(�t) − ξ2(0) = �t

2
(pξ2(�t/4) + pξ2(3�t/4))

1

2
(η2(�t/2) − η2(0)) = �t

4
pη2(�t/4)

1

2
(η2(�t) − η2(�t/2)) = �t

4
pη2(3�t/4)

η2(�t) − η2(�t/2) + η2(�t/2) − η2(0) = �t

2
(pη2(�t/4) + pη2(3�t/4))

η2(�t) − η2(0) = �t

2
(pη2(�t/4) + pη2(3�t/4))

ξ1(�t/2) − ξ1(0) = �t

2
pξ1(�t/4)

ξ1(�t) − ξ1(�t/2) = �t

2
pξ1(3�t/4)

ξ1(�t) − ξ1(�t/2) + ξ1(�t/2) − ξ1(0) = �t

2
(pξ1(�t/4) + pξ1(3�t/4))

ξ1(�t) − ξ1(0) = �t

2
(pξ1(�t/4) + pξ1(3�t/4))

η1(�t/2) − η1(0) = �t

2
pη1(�t/4)

η1(�t) − η1(�t/2) = �t

2
pη1(3�t/4)

η1(�t) − η1(�t/2) + η1(�t/2) − η1(0) = �t

2
(pη1(�t/4) + pη1(3�t/4))

η1(�t) − η1(0) = �t

2
(pη1(�t/4) + pη1(3�t/4)). (A.13)
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Table 3. Numerical and analytical Jacobian.

�t det(JN ) det(JA) |det(JN ) − det(JA)|
0.01 0.998 1491 0.998 1435 5.6 × 10−6

0.03 0.983 0623 0.983 0591 3.2 × 10−6

0.05 0.952 7543 0.952 7493 5.0 × 10−6

0.07 0.907 9818 0.907 9821 3.0 × 10−7

0.09 0.850 5255 0.850 5250 5.0 × 10−7

0.10 0.817 8399 0.817 8414 1.5 × 10−6

The Jacobian becomes

det(Jtot) = e−(ξ2(�t)+ξ(�t)+η2(�t)+η1(�t)) e(ξ2(0)+ξ1(0)+η2(0)+η1(0))

× e−�t(pε (15)/W−ε(16)−pε (17)/W+pε (18)/W) (A.14)

where,
pε(15)

W
= pε(17)

W
= pε(18)

W
= pε(�t/2)

W
(A.15)

and,

ε(�t) = ε(0) +
pε(�t/2)

W
. (A.16)

However, recalling that

ε = ln
V

V (0)
(A.17)

where V (0) is the initial volume, it follows that ε(0) = 0. Thus,

ε(�t) = pε(�t/2)

W
. (A.18)

Finally, the Jacobian of the transformation xt → x0 is

det(Jtot) = e−(ξ2(�t)+ξ(�t)+η2(�t)+η1(�t)) e(ξ2(0)+ξ1(0)+η2(0)+η1(0)) (A.19)

which is precisely the Jacobian computed directly from the equations of motion. Thus, the
new integrator satisfies the generalized Liouville theorem in equation (2.8).

In addition to the analytical derivation, a numerical calculation of the Jacobian was
performed as well using the potential in equation (6.1). The numerical calculation was
performed as follows: In order to calculate each element of the 12 × 12 Jacobian matrix, the
initial value of each phase-space variable was displaced by amounts h and −h, with h = 10−6,
and the integrator was run for 1 step to produce the resultant phase-space vector at time �t . A
numerical derivative was then calculated in order to obtain each element in the matrix. Finally,
the determinant of the matrix was then determined. Table 3 compares the values of numerical
and analytical Jacobian for different-sized time steps.

It can be seen that the numerical and analytical Jacobian values agree to within the error
of the numerical differentiation with no degradation as the time step is increased. This serves
as an additional validation of the new integrator.
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